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Abstract

In the paper a new algorithm to "nd peaks in two, three and multidimensional spectra, measured in large multidetector
c-ray arrays, is derived. Given the dimension m, the algorithm is selective to m-fold coincidence peaks. It is insensitive to
intersections of lower-fold coincidences, hereinafter called ridges. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The event data obtained with large c-ray detector arrays such as EUROGAM [1], GAMMASPHERE
[2], GASP [3] can be used to generate two, three, four or in general m-fold coincidence spectra. Progress in
the understanding of nuclear structure depends on the ability to analyze these multidimensional spectra
correctly. Obviously, the lack of methods for analyzing such data sets can create a major obstacle to
extracting interesting physical information. The information contained in the many-fold coincidence spectra
is overwhelming and so extracting all the detailed information contained in multidimensional peaks proves
di$cult. The evaluation of multidimensional peaks starts with determining their position in a multidimen-
sional space. Subsequently, the peak-searching procedure must recognize the shape of the object found, and
decide whether it is multidimensional Gaussian or not. Afterward, the positions of identi"ed peaks can be fed
as initial estimates into the peak-"tting procedure for thorough analysis.

At present, there exist several algorithms for automatic identi"cation of peaks in one-dimensional spectra.
One such well-known peak-searching algorithm is Mariscotti's method [4], which is based on the evaluation
of smoothed second di!erences. A modi"cation of this method is presented in Ref. [5]. The basis of the
methods presented in Refs. [6}8] is the smoothed "rst derivative which changes sign in the vicinity of the
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peak. A di!erent approach based on Markov chains is used in the peak-searching method published in Ref.
[9].

Application of any of these methods cannot be directly extended to searching for peaks in a multidimen-
sional space. In a simpli"ed way one can think of a one-dimensional spectrum as a composition of
background, peaks and statistical disturbances (noise). However, in multidimensional c-ray spectra, things
are completely di!erent. For instance two-dimensional c-ray spectra, contain continuous background,
one-fold coincidences (ridges as a result of peak}background coincidences) in both directions and two-fold
coincidence c-ray peaks. We are only interested in, and looking for, two-fold coincidence peaks. The
proposed algorithm must be insensitive to the intersections of one-fold coincidence ridges that, at "rst glance,
look like two-dimensional peaks. The method must be able to distinguish between the intersection of two
ridges and a two-fold coincidence peak. The situation is further complicated by the fact that two-dimensional
peaks are usually located at the points of crossing ridges.

Analogously three-dimensional spectra contain continuous background, one-fold and two-fold coincid-
ences (ridges), in all three directions, as well as three-fold coincidence peaks. Again, we are interested only in
the identi"cation of three-fold coincidence peaks. The algorithm should ignore the intersections of either
one-fold or two-fold coincidence ridges. In general, in m-dimensional c-ray spectra the algorithm should
identify only m-fold coincidence peaks.

The aim of the paper is to propose an algorithm for the identi"cation of 2, 3,2, m-fold coincidence peaks
in 2, 3,2, m-dimensional c-ray spectra.

2. Peak searching algorithm in two-dimensional spectra

We suppose that the number of counts in a two-dimensional c-ray spectrum in the channels x, y can be
approximated by
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give its position, p
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are standard deviations of normal distributions in the directions

x and y respectively, and o is a correlation coe$cient. Analogously one-dimensional ridges parallel with axes
y and x can be described by
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respectively. For a short interval we assume that the background in Eq. (1) can be approximated by the linear
function

B#Cx#Dy. (5)
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Obviously the mixed partial second derivative of Eq. (1) in both dimensions L4N(x, y)/Lx2Ly2 does not
depend on G

2
(x),G

3
(y) and the linear background.

Due to the discrete nature of channel counts, we shall replace the mixed partial second derivatives by the
mixed partial second di!erences in both dimensions, thus

S(i, j)"N(i#1, j#1)!2N(i, j#1)#N(i!1, j#1)!2N(i#1, j)#4N(i, j)!2N(i!1, j)

#N(i#1, j!1)!2N(i, j!1)#N(i!1, j!1). (6)

In order to eliminate statistical #uctuations we shall employ smoothed mixed partial second di!erences in
both dimensions.

The smoothing is achieved by summing S(i, j) in a given window

S
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where the window is w"2r#1. In accordance with Ref. [4] the repetitive application of Eq. (3) yields the
general smoothed mixed partial second di!erences in both dimensions, S

z,w
(i, j), where z is the number of

repetitions. For the sake of simplicity, from now on in the paper we shall call the di!erence spectrum S
z,w

(i, j)
the two-parameter smoothed second di!erences or two-parameter SSD.

The contents of the channel i, j of this di!erence spectrum can then be expressed as
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where r"zm#1, m"(w!1)/2. Eqs. (6) and (7) imply that the elements of the "lter matrix C
z,w

(i, j) can be
factorized, i.e.
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The vector elements C
z,w

(i), i3S!r, rT, can be calculated using the recursion formula
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where i3S!zr!1, zr#1T and
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In analogy with the algorithm in Ref. [4] and in view of Eq. (9), we de"ne the standard deviation of
a two-parameter SSD as

F
z,w

(i, j)"S
i`r
+

i1/i~r

j`r
+

j1/j~r

C2
z,w

(i
1
!i)C2

z,w
( j

1
!j)N(i

1
, j
1
). (11)

Another way to compute the coe$cients of the "lter vector C is used in Ref. [5]. The vector C is de"ned as the
second derivative of the Gaussian

Cp (i)"
d2

dx2
expA!
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2p2BK
x/i

(12)
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Fig. 1. Synthetic spectrum with two two-dimensional Gaussians located at points A and B.

where p is the standard deviation of the searched peaks. The replacement of the "lter coe$cients C(i) from
Eq. (12) to Eqs. (8), (9) and (11) is straightforward. The choice of method employed in a peak-searching
procedure is optional and depends on the application. While in the "rst case the free parameters are z,w, in
the second method the only free parameter is p. In general, independently of the calculation method of the
SSD "lter, relations (8) and (11) can be expressed as
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The two-parameter SSD spectrum calculated using the algorithm presented above is insensitive to the
intersection of two ridges representing coincidence peak}background. For illustration, using Eqs. (1)}(5) we
have generated a (synthetic) spectrum (Fig. 1) with two two-dimensional Gaussians
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Fig. 2. The di!erence spectrum for the spectrum from Fig. 1.

two ridges parallel with the x axis

G
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"200, x
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"80)

G
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(A
3B

"500, x
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"200) (17)

and linear background

800!1.176x!1.96y.

The parameters p were set to 6 and o"0.
At a "rst glance it is very di$cult to estimate the positions of two-dimensional Gaussians. Their positions

are denoted in Fig. 1 by the points A,B. The di!erence spectrum calculated according to Eqs. (8)}(10) with
w"7, z"7 is shown in Fig. 2.

Apparently the di!erence spectrum re#ects only the presence of two-dimensional peaks G
1A

, G
1B

. It
ignores linear background, ridges G

2A
,G

2B
, G

3A
,G

3B
and their intersections.

Now we shall have a closer look at the shape of the di!erence spectrum of a two-dimensional peak (Fig. 3).
We can observe that in slices A, B,C,D the courses of the curves correspond to the smoothed second

di!erence spectrum of a one-dimensional Gaussian. In slices E,F they correspond to negation of the
smoothed second di!erence spectrum of a one-dimensional Gaussian. The di!erence spectrum and its
standard deviation for one-dimensional Gaussian are given in Fig. 4.

According to Fig. 4, to decide whether an object found is a Gaussian peak or not, we have to de"ne the
points i

1
}i

6
. Subsequently we can apply evaluation criteria for a one-dimensional Gaussian described in

detail in Ref. [4]. We repeat this procedure for each dimension (in our example slices E,F).
When looking at Figs. 2 and 3 more thoroughly, we can observe that one two-dimensional peak gives rise

to "ve local maxima in the di!erence spectrum. The position of one of the local maxima located in the middle
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Fig. 3. The shape of the di!erence spectrum of the two-dimensional Gaussian.

Fig. 4. The di!erence spectrum and its standard deviation for one-dimensional Gaussian.

of the surrounding ones corresponds to the position of the two-dimensional peak. Let us call this local
maximum true and the remaining four local maxima false (Fig. 5).

Once we have calculated two-parameter SSD (di!erence spectrum), the problem is how to distinguish
between true and false maxima. False maxima should be ignored by the searching algorithm. In simple
instances, when we have just a few peaks in the spectrum, it may seem trivial. It can be solved by "nding
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Fig. 5. True and false local maxima for the two-dimensional peak.

groups of corresponding "ve maxima. Such an example can be illustrated by the spectrum with one peak
from an experiment of positron annihilation (Fig. 6) [10].

Its two-parameter SSD is shown in Fig. 7.
However, when a large number of peaks has to be evaluated in a spectrum, as is usually the case for c-ray

spectra, this task is very di$cult. Figs. 8 and 9 give an example of such a two-dimensional c-ray spectrum and
its two-parameter SSD, respectively.

From Fig. 9 it is obvious that it is practically impossible to "nd groups of corresponding "ve local maxima.
The true and false local maxima of two-parameter SSD of neighboring peaks in an original spectrum can
either be mixed or may coincide. Therefore it is necessary to suppress in a way the false maxima in the
two-parameter SSD.

In keeping with Eqs. (7), (8) and (13) we shall de"ne spectra of the one-parameter smoothed second
derivatives (one-parameter SSD) in both x and y independent variables, i.e.

X(i, j)"
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i1/i~r

C(i
1
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, j) (18)

and

>(i, j)"
j`r
+

j1/j~r

C( j
1
!j )N(i, j

1
) (19)

where the coe$cients of the "lter C are de"ned either according to Eq. (10) or Eq. (12).
As a step toward understanding the di!erence among "lters, we provide an example in Table 1 of the "lter

C
s
(i, j) for z"w"0 according to Eq. (10) for two-parameter SSD as well as examples of "lters C

x
(i),C

y
( j ) for

one-parameter SSDs in a two-dimensional space.
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Fig. 6. Spectrum with one peak from experiment of positron annihilation.

Fig. 7. Two-parameter SSD spectrum from Fig. 6.

Fig. 8. Two-dimensional c-ray spectrum.
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Fig. 9. Two-parameter SSD spectrum from Fig. 8.

Table 1
Examples of the "lters C

s
(i, j) for z"w"0 according to Eq. (10) for two-parameter SSD and C

x
(i),C

y
( j) for one-parameter SSDs in

two-dimensional space

C
s
(i, j) C

x
(i, j) C

y
(i, j)

j
1

i
1

i!1 i i#1 i!1 i i#1 i!1 i i#1

j!1 1 !2 1 1 !2 1 1 1 1

j !2 4 !2 1 !2 1 !2 !2 !2

j#1 1 !2 1 1 !2 1 1 1 1

From the "lters de"ned in this way we can observe that, at the expected position of a two-dimensional
peak i

1
"i, j

1
"j, we have

C
s
(i, j)'0, C

x
(i)(0, C

y
( j )(0.

Likewise from the de"nitions of a two-parameter SSD given by Eqs. (7)}(10) and (13) and a one-parameter
SSD given by Eqs. (18) and (19) as well as from Fig. 4 and presented examples, it is apparent that in the
position of a true local maximum of a two-parameter SSD (i

t
, j
t
), the following conditions are satis"ed:

S(i
t
, j
t
)'0, X(i

t
, j
t
)(0 and >(i

t
, j
t
)(0. (20)

Together with them the following conditions, saying that in the point (i
t
, j
t
) one-parameter SSDs have local

minima in both dimensions, also must be satis"ed:
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Fig. 11. Two-parameter SSD spectrum from Fig. 9 after application of condition (20).

Fig. 10. Two-parameter SSD spectrum from Fig. 7 after application of condition (20).

Condition (20) is not satis"ed in the point of a false local maximum in a two-parameter SSD (i
f
, j
f
), i.e.

S(i
f
, j
f
)'0 and (X(i

f
, j
f
)50 or >(i

f
, j
f
)50). (23)

By application of condition (20) we can unambiguously distinguish between true and false maxima in
a two-parameter SSD. Examples of two-parameter SSD spectra from Figs. 7 and 9, after application of
condition (20), are presented in Figs. 10 and 11.

Summarizing the algorithm to search for peaks in a two-dimensional spectrum is as follows:

a. Using Eq. (13), we calculate the spectrum of the smoothed second di!erences in both dimensions
(two-parameter SSD) S(i, j).

b. Using Eq. (14), we calculate the spectrum of the standard deviations of the smoothed second di!erences in
both dimensions F(i, j).

c. For i3S0, n
1
!1T, j3S0, n

2
!1T, where n

1
, n

2
are sizes of the spectrum, we search for local maxima in

the spectrum of two-parameter SSD } S(i, j).
d. Once we have found a local maximum in the position i

l
, j
l
, then by using Eqs. (18) and (19), we calculate

spectra of one-parameter SSD X(i
l
, j
l
) and>(i

l
, j
l
), respectively. Then by applying condition (20) we decide

whether the found local maximum is true or false.
e. If condition (20) is satis"ed we test the slice S(i, j

l
),F(i, j

l
), i3S0, n

1
!1T (slice F in Fig. 3) by Mariscotti's

criteria for the shape of the peak in x dimension. Likewise we test the slice S(i
j
, j),F(i

l
, j), j3S0, n

2
!1T

(slice E in Fig. 3) by the same criteria for the shape of the peak in y dimension.
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f. If the shape of the peak in both dimensions satis"es these criteria, we have found a two-dimensional peak
in the position i

l
, j
l
.

g. We repeat the whole procedure for another local maximum from point c onwards.

3. Peak-searching algorithm for three and m-dimensional spectra

The algorithm of peak searching in two-dimensional spectra described so far can be generalized to three-,
four- and m-dimensional spectra. Analogous to the two-dimensional case, we can de"ne for three dimensions,
a spectrum of the smoothed second di!erences in all three dimensions, three-parameter SSD,

S(i, j, k)"
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+
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+
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+

k1/k~r
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1
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1
, j
1
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1
) (24)

and its standard deviation
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+
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+
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+
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, k

1
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If we choose the "lter according to Eq. (10), we obtain

C
s
(i, j, k)"C(i)C( j )C(k). (26)

With a view to explaining some facts in Table 2, we present this three-dimensional "lter for z"w"0.
With regard to Eq. (10) from Table 2 we can see that of the expected position of a three-dimensional peak

i
1
"i, j

1
"j, k

1
"k we have

C
s
(i, j, k)(0 (27)

and

C(i)(0, C( j )(0, C(k)(0. (28)

Obviously the point i
1
"i, j

1
"j, k

1
"k is the only one in Table 2 that satis"es conditions (27) and (28).

Further in analogy to Eqs. (18) and (19), we de"ne spectra of the one-parameter SSD in all three dimensions
by

X(i, j, k)"
i`r
+

i1/i~r

C(i
1
!i)N(i

1
, j, k) (29)

>(i, j, k)"
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1
, k) (30)

Z(i, j, k)"
k`r
+

k1/k~r

C(k
1
!k)N(i, j, k

1
). (31)

The spectrum of a three-parameter SSD de"ned according to Eq. (24) is insensitive to continuous back-
ground, one-fold coincidences peak}background, two-fold coincidences peak}background or to any combi-
nations of their intersections. Now in the position of the expected three-dimensional peak, the function
S(i, j, k) has corresponding local minima. Besides in the vicinity of a three-dimensional peak the function
S(i, j, k) contains additional 12 local minima. Again the true local minimum must be distinguished from the
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Table 2
An example of three-dimensional "lter for z"w"0

k
1
"k!1 k

1
"k k

1
"k#1

i
1

i!1 i i#1 i!1 i i#1 i!1 i i#1
j
1

j!1 1 !2 1 !2 4 !2 1 !2 1

j !2 4 !2 4 !8 4 !2 4 !2

j#1 1 !2 1 !2 4 !2 1 !2 1

false ones. Analogously with condition (20) and in line with the example given above of "lter C, one can
conclude that in the position of true local minimum (i

t
, j
t
, k

t
) it holds

S(i
t
, j
t
, k

t
)(0, X(i

t
, j
t
, k

t
)(0,

>(i
t
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t
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t
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t
, j
t
, k

t
)(0.

(32)

Now we can generalize the search algorithm for m-dimensional spectra. For the spectrum of the m-parameter
SSD we can write

S(i
1
, i
2
,2, i

m
)"
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+
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2
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Its standard deviation is

F(i
1
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2
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m
)"S

i1`r
+

a1/
1
~r

i2`r
+

a2/i2~r

2

im`r
+

a/im~r

C2(a
1
!i

1
, a

2
!i

2
,2, a

m
!i

m
)N(a

1
, a

2
,2, a

m
). (34)

Similarly, the spectra of a one-parameter SSD are

X
1
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1
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m
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m
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+
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m
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m
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1
, i
2
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m
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Provided we have de"ned "lter C, either according to system (9), (10) or to Eq. (12), then for an m-dimensional
peak (i

1
, i
2
,2, i

m
) one can conclude that

a. if m is odd, S(i
1
, i
2
,2, i

m
)(0

(36)
b. if m is even, S(i

1
, i
2
,2, i

m
)'0.

The spectrum of an m-parameter SSD (33) is insensitive to lower-fold coincidences of the peak-background.
It is selective only to m-fold coincidence peaks. However, around the m-dimensional peak it generates false
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Fig. 12. Synthetic two-dimensional spectrum with found peaks denoted by markers.

local extremes, if m is odd } minima, if m is even } maxima. Their number is

a. if m is odd,
3m!1

2
!1

b. if m is even,
3m!1

2
.

In analogy to two- and three-dimensional spectra, the false local extremes can be suppressed by applying
conditions

X
j
(i
1
, i
2
,2, i

m
)(0, j3S1, mT (37)

where X
j
(i
1
, i
2
,2, i

m
) are calculated according to Eq. (35).

Finally, in the general case of m-dimensional spectra the search algorithm of m-fold coincidence peaks can
be expressed as follows:

a. Using Eq. (33), we calculate the spectrum of the smoothed second di!erences in all dimensions (m-
parameter SSD) S(i

1
, i
2
,2, i

m
).

b. Using Eq. (34), we calculate the spectrum of standard deviation of the smoothed second di!erences in all
dimensions F(i

1
, i
2
,2, i

m
).

c. For i
j
3S0, n

j~1
T, j3S1,mT, where n

1
, n

2
,2, n

m
are sizes of the spectrum, we search for local extremes

1. if m is odd } local minima
2. if m is even } local maxima

in S(i
1
, i
2
,2, i

m
).
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Fig. 13. Coincidence of two-dimensional c-ray spectrum with found peaks.

d. Once we have found an appropriate local extreme in the point l
1
, l
2
,2, l

m
, using Eq. (35), we calculate

spectra of one-parameter SSD

X
1
(l
1
, l
2
,2, l

m
),2,X

m
(l
1
, l
2
,2, l

m
).

Then by applying conditions (37) we decide whether the obtained local extreme is true or false.
e. If conditions (37) are satis"ed, we test the slices

(!1)m`1S(i
1
, l
2
,2, l

m
), F(i

1
, l
2
,2, l

m
), i

1
3S0, n

1
T

(!1)m`1S(l
1
, i
2
,2, l

m
), F(l

1
, i
2
,2, l

m
), i

2
3S0, n

2
T

F

(!1)m`1S(l
1
, l
2
,2, i

m
), F(l

1
, l
2
,2, i

m
), i

m
3S0, n

m
T

by Mariscotti's criteria for the shape of the peak in each dimension.
f. If the shape of the peak in all dimensions satis"es these criteria, we have found the m-dimensional peak in

the position (l
1
, l
2
,2, l

m
).

g. We repeat the whole procedure for another local extreme from point c onwards.

4. Results

The algorithms to search for peaks in coincidence two- and three-dimensional spectra described so far
have been tested using computer-generated synthetic spectra. For this kind of spectra we know in advance
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Fig. 14. Synthetic three-dimensional spectrum.

the result that should be obtained and thus we can verify the reliability of the algorithms. In Fig. 12 we can
see an example of such a two-dimensional spectrum. It contains two-dimensional peaks, ridges in both
dimensions, and noise. The peak-searching procedure "nds two-dimensional peaks exactly at the location
where they were generated. The markers denote the positions of the found two-dimensional peaks. The
method is insensitive to the crossing of ridges.

Fig. 13 illustrates real coincidence two-dimensional c-ray spectrum. Again, the found two-dimensional
peaks are denoted by markers.

Similarly we have tested the peak-searching algorithm for three-dimensional spectra. In Fig. 14 we can see
again the synthetic three-dimensional spectrum. The channels are represented by balls. Their sizes are
proportional to the counts that the channels contain. The spectrum is composed of three-dimensional peaks,
ridges of one- and two-fold coincidences and noise.

Again, the peak-searching procedure determines exactly the positions of three-dimensional peaks in the
locations where they were generated. In Fig. 15 we can see the found peaks without spectrum. The employed
visualization technique allows us to read out in a simple way the positions of found peaks.

Likewise, we have used the derived algorithm to search for peaks in the real three-dimensional spectrum
(Fig. 16).

The peaks found in this spectrum are shown in Fig. 17. Again this example gives evidence that the method
is insensitive to crossing of lower-fold coincidences.

5. Conclusions

The paper presents a peak-searching algorithm for two- and three-dimensional spectra. The algorithm was
generalized for m-dimensional spectra as well. The derived algorithms are insensitive to both lower-fold
coincidences, peak}background and their crossings.
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Fig. 15. Found peaks in three-dimensional spectrum.

Fig. 16. Real three-dimensional spectrum.
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Fig. 17. Found peaks in three-dimensional spectrum from Fig. 16.

The algorithms of peak searching derived in the paper have been implemented in the multiparameter
nuclear data acquisition and processing system [11,12]. They have been employed in order to process one-,
two- and three-dimensional spectra from experiments in LBL Berkeley, which are carried out in collabora-
tion with Vanderbilt University, JINR Dubna, Idaho National Engineering Laboratory and Oak Ridge
National Laboratory.
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